skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Verniero, Jaye L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent in situ observations from Parker Solar Probe (PSP) near perihelia reveal ion beams, temperature anisotropies, and kinetic wave activity. These features are likely linked to solar wind heating and acceleration. During PSP Encounter 17 (at 11.4Rs) on 2023 September 26, the PSP/FIELDS instrument detected enhanced ion-scale wave activity associated with deviations from local thermodynamic equilibrium in ion velocity distribution functions (VDFs) observed by the PSP/Solar Probe Analyzers-Ion. Dense beams (secondary populations) were present in the proton VDFs during this wave activity. Using bi-Maxwellian fits to the proton VDFs, we found that the density of the proton beam population increased during the wave activity and, unexpectedly, surpassed the core population at certain intervals. Interestingly, the wave power was reduced during the intervals when the beam population density exceeded the core density. The drift velocity of the beams decreases from 0.9 to 0.7 of the Alfvén speed, and the proton core shows a higher temperature anisotropy (T/T > 2.5) during these intervals. We conclude that the observations during these intervals are consistent with a reconnection event during a heliospheric current sheet crossing. During this event,α-particle parameters (density, velocity, and temperature anisotropy) remained nearly constant. Using linear analysis, we examined how the proton beam drives instability or wave dissipation. Furthermore, we investigated the nonlinear evolution of ion kinetic instabilities using hybrid kinetic simulations. This study provides direct clues about energy transfer between particles and waves in the young solar wind. 
    more » « less
    Free, publicly-accessible full text available June 11, 2026
  2. Abstract This paper addresses the first direct investigation of the energy budget in the solar corona. Exploiting joint observations of the same coronal plasma by Parker Solar Probe and the Metis coronagraph aboard Solar Orbiter and the conserved equations for mass, magnetic flux, and wave action, we estimate the values of all terms comprising the total energy flux of the proton component of the slow solar wind from 6.3 to 13.3 R ⊙ . For distances from the Sun to less than 7 R ⊙ , we find that the primary source of solar wind energy is magnetic fluctuations including Alfvén waves. As the plasma flows away from the low corona, magnetic energy is gradually converted into kinetic energy, which dominates the total energy flux at heights above 7 R ⊙ . It is found too that the electric potential energy flux plays an important role in accelerating the solar wind only at altitudes below 6 R ⊙ , while enthalpy and heat fluxes only become important at even lower heights. The results finally show that energy equipartition does not exist in the solar corona. 
    more » « less